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Abstract 
In this paper, we propose a solution for the problem of rotated partial shoeprints retrieval based on the combined 

use of local points of interest and SIFT descriptor. Once the generated features are encoded using SIFT 

descriptor, matching is carried out using RANSAC to estimate a transformation model and establish the number 

of its inliers which is then multiplied by the sum of point-to-point Euclidean distances below a hard threshold. 

We demonstrate that such combination can overcome the issue of retrieval of partial prints in the presence of 

rotation and noise distortions. Conducted experiments have shown that the proposed solution achieves very 

good matching results and outperforms similar work in the literature both in terms of performances and 

complexity. 

 

I. Introduction 
As a form of physical evidence, a shoe mark, 

which is a mark made when the sole of a shoe comes 

into contact with a surface, can provide an important 

link between the criminals and the place where the 

crime occurred [1-3]. A shoeprint lifted from a Scene 

of Crime (SoC) can be checked against a database 

that includes the prints of shoes in the market to 

determine its model. It can also be matched against 

other SoC prints and shoeprints taken from the crime 

suspects so that a given shoeprint can be identified as 

being made by a specific shoe. Several techniques 

and algorithms have been reported in the literature 

for automatic classification, recognition, indexing 

and retrieval of shoe prints in the presence of rotation 

and noise distortions. Chazal et al [4] proposed a 

system for automatically sorting a database of 

shoeprints based on the outsole patterns in the 

Fourier domain in response to a reference shoeprint. 

As shown in [4], the Power Spectral Density (PSD) 

coefficients of the image are calculated using the 

Fourier Transform and used as features. A correlation 

function of the PSD coefficient from a reference 

database and a query image is used as a similarity 

metric [4]. To achieve invariance to rotation, 

matching is also carried out with rotated versions of 

the query image. It was suggested that the query 

image should be rotated in the range of [-30 30] 

degree with a rotation step of one degree to achieve 

rotation invariance within that range. That leads to 

matching an additional 60 copies of the same query 

image to the reference database in a brute force 

approach that attempts to better the matching score. 

Such drawback is overcome with the use of 

correlation filters [5]. Although rotated copies of the 

images are still used, only the reference images are 

rotated to generate a unique correlation filter. Still, 

the designed filter is only robust to rotation within  

 

the adopted training range. To achieve a high 

accuracy, the rotation angle to which the filter is 

robust in [5] is narrower than in the case of the PSD 

method [4]. As such multiple filters are required if 

robustness to a wider angle is to be attained. Multi 

resolution based techniques have been used in [6], 

where the radon transform is used to estimate the 

shoe print rotation angle. A print is divided into none 

overlapping 16× 16-pixel blocks and convolved with 

an eight-direction Gabor filter bank. The average 

variance in each block across all Gabor-filtered 

images is used as a feature map. To insure robustness 

to partial prints, eight different partial prints are also 

processed and included in the reference database to 

create a 9-print class of the same shoe. A similar 

technique was used in [7] based on the use of 

directional filter banks. However, in [7], it is the 

energy within the filtered blocks which is used to 

build a feature vector. It is not clear if its energy-

based features will perform well on a partial print 

that was not present in the training phase of the 

techniques in [6-7]. 

Following their successful use in image retrieval 

from large databases, model based recognition, 

object retrieval and texture recognition [8-10], 

techniques for shoe print image retrieval and 

classification based on extracting local features were 

suggested in [11]. Pavlou et al presented an efficient 

automated system for identifying shoe models based 

on using Maximally Stable Extremal Region 

(MSER) features which are transformed using SIFT 

descriptor [10]. Although the SIFT descriptor is 

rotation invariant, the experiments did not show the 

performances of the systems against rotation 

distortions. 

In this paper, the issue of automatically 

classifying shoe marks is addressed. A critical issue 

that has to be overcome in order to achieve such a 
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goal is the fact that one may have no control over the 

quality of the shoe marks collected form a SoC or 

from suspects in police custody [2]. As shown in 

Figure 1, frequent distortions that a SoC may 

encompass include partial occlusion, illumination 

variation, rotation, noise and affine distortions also 

termed foreshortening caused by non perpendicular 

photography [ 2]. The proposed solution in this paper 

tackles the is sues of rotation and noise distortions in 

partial prints. The local features are the Harris 

detector corners. Typically, in a shoe print up to a 

thousand corners a re found using the detector in []. 

The number of detected points is reduced by creating 

a 4-level pyramid where a detected point is only 

taken into account if its Laplacian response is a local 

maxima in a 3×3×3 neighbourhood. Once the points 

are selected, the SIFT descriptor provides a rotation 

invariant representation of shoe prints [10]. Matching 

is carried out iteratively using RANSAC. Once a 

transformation model is found, the number of inliers 

is weighted by the sum of Euclidean distances below 

a hard threshold. 

 
Figure 1. Left. SOC partial print with scale, rotation 

and illumination variation. Right. Correct match. 

 

II. Multi-scale Harris detector and SIFT 

descriptor 
A Harris point is any point image where the 

signal value changes significantly in two dimensions. 

Conventional “corners”, such as L -corners, T-

junctions and Y-junctions, which are all intersections 

of two edges, satisfy this definition. However, with 

such a definition, a corner can also be an isolated 

point or an end of line. A Harris corner can be 

computed over a local neighbourhood (x,y) as a 

weighted sum of first order derivatives products 

defined as [12]: 

Where the subscript indices x and y indicate a 

derivative of the image f with respect to the variable 

x and y, respectively.  

Thus, the normalized Laplacian of Gaussian 

(LoG) of 

 

(2) can be expressed as [8-10]: 

Mikolajczyk et al have extended the Harris 

corner detector in [12] to a multi-scale form, which 

can detect the corners at different scales [8-9]. It 

takes account of feature detection with automatic 

characteristic scale selection as shown in [1 3], 

where LoG has been demonstrated to be successful 

in scale selection. The multi scale detector, termed 

Harris-Laplace detector, exploits the high accuracy 

of location of a Harris corner detector and the robust 

scale selection of the LoG detector [8-10, 13]. It was 

shown that such detector’s points possess a better 

repeatability than the SIFT algorithm points while 

they are more abundant in images than the MSER 

features [8]. The scale adaptive Harris detectors are 

based on an extension of the matrix A in (1), where, 

and are the integration and differentiation scales, 

respectively [8-9]: 

The eigenvalues λ1 and λ2 of A(x,y,αi,αd) 

characterises the cornerness of a given image 

neighbourhood, which makes Harris points invariant 

to rotation. The case where λ1 and λ2 are both large 

indicates the presence of a corner. As suggested in 

the eigen values of A(x,y,αi,αd), is simpler than the 

computation of the eigenvalues of A(x,y,αi,αd)where 

the value of constant x, which is a tunable sensitivity 

parameter, can be empirically set. Such a multi scale 

Harris point detector may detect all the corners types 

of points described previously. The Harris-Laplace 

detector computes the scale-adapted Harris formula 

in (5) and selects the points for which the LoG in (3) 

attains a local maximum over scale. It builds a scale-

space representation and only selects points which 

are scale adapted Harris corners and coincide with 

LoG local maxima at the scale. Although such 

approach may lead to designing a scale invariant 

technique, a pyramid with very few levels is 

considered in this paper. The aim is to reduce the 

number of detected points by selecting only those 

which are local maxima. 

 

III. Points detector and descriptor 

implementation 
Based on equations (4) and (5), a 4-level scale-

space representation using Harris function has been 

built. The initial scale and the interval between two 

successive was set to 1.2 and 1.5, respectively. With 

such a large interval between two successive levels 

and few levels built, it is not expected to achieve 

scale invariance. However, selecting only the points 

which are local maxima reduces dramatically the 

number of corners selected to only a few hundreds. 

The constant _ in equation (5) was set to 0.04. The 

ratio of the differentiation __ scale to integration 

scale__ was set to 0.7. Harris points of interest are 2-

D local maxima; that is a point is selected if it is a 

maxima in a 3×3 neighbourhood. To remove weak 

and instable maxima points, only maxima points that 

are at least 15% of the value of the level absolute 
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maximum are taken into account. The selected Harris 

points are then checked whether or not their LoG 

response achieves local maxima over scales; that is a 

LoG response of a given Harris point is more 

important thanits adjacent pixels in a 3-D search over 

a 3×3×3 neighbourhood. Associated with Harris 

points detector is a descriptor which provide a hash 

signature of the neighbourhood of a given point. The 

SIFT descriptor computes a weighted gradient 

magnitude histogram of gradient location and 

orientation in a region surrounding the detected point 

of interest [10]. First, to assign an orientation to a 

given point of interest, at the level in the scale-space 

representation in which the point was detected, a 36-

bin gradient histogram covering the 360 degree range 

of orientations is computed. In the resulting 

histogram, the absolute peak and any local peak 

within 80% of its value are selected as orientation 

angles. This approach together with the subsequent 

interpolation suggested in [10], lead to creating 

multiple points in the same space location and scale, 

though with a different orientation. Thus far, to each 

point is assigned a spatial location (x, y), a scale σ 

and an orientation θ. To build a SIFT descriptor; a 

circular patch cantered at a point of interest is 

selected. The selected neighbourhood is mean and 

standard deviation normalized. The gradient 

magnitudes and orientations are sampled around the 

key point location to a 16 × 16 pixels neighbourhood 

which is the size of the descriptor window [10]. Such 

window grid is formed of 4 × 4 blocks each of 4 × 4 

pixels. The gradient angle associated with every 

block is quantized into 8 directions using the gradient 

magnitude. The resulting 3-D histogram is a 128 

dimensional feature vector. 

 
Figure 2. SIFT Descriptor in [10] 

 

Matching is carried out in two steps. First, inliers 

that belong to a rotation transformation are found. 

The score from this step is the number of computed 

inliers that belong to the estimated rotation 

transformation; that is the number of points in the 

query image that match other points in a reference 

image on a point-to-point basis. In the second step, 

one computes a matrix of point-to-point distances 

between the reference and query images. Such 

strategy sum s up all distances below a threshold, set 

in the presented experiments to 0.005. The distance 

used to build the point-to-point distance matrix is the 

Euclidean distance of any two points’ normalised 

descriptors. A s with RANSAC voting, the highest is 

the score, the better is the matching. Let be the 

number of detected points in a query image using the 

multi-s cale Harris detector in equations (5). 

Similarly, let be the number of detected points in a 

reference image. A matching score based on the 

points extracted using the Harris detector can be 

obtained from a matrix formed from the Euclidean 

distance dij elements below a threshold: 

                                                                                (6) 

 

Finally, the matching score is the result of 

multiplying the number of inliers by the score 

computed by (6). 

 

IV. Experiments and results 
Experiments were run on a reference database of 

300 shoe prints from Foster & Freeman [3]. To 

simulate scene of crime prints, degraded images 

from the reference database were created. Divided 

into three query databases, the degradations include: 

· Rotation distortions  

· Noise distortions  

· rotation distortions wit h Gaussian noise 

perturbations  

 

To simulate partial prints in SoCs, random 

quarter prints were selected to build the above four 

query databases. As such, a shoe is divided into its 

toe and heel parts, which are then divided into a left 

and right part. Each of the above four test databases 

was built separately; that is it was not require d that 

all databases should be built from the same partial 

prints. The selected quarter print is then rotated 

and/or Gaussian noise added to constitute the above 

three databases. Figure 3 shows three query ima ges 

with different amount of added Gaussian noise and 

their correct match. Each query databases is formed 

of 300 prints which are matched against the 300 

prints in the reference database. Although such 

approach is not conventional as data is not divide d 

into training data and test data, it is common in lo cal 

image features literature [10]. It circumvents so me 

very strict data protection regulations in force in the 

UK. Furthermore, when the proposed solution is com 

pared with similar techniques in the literature, the 

same test constraints are applied to all of them, 

making the comparison as fair and extensive as 

possible. Other ways of building training and test 

databases can be carried out by asking supposed 

suspects to provide multiple prints of their shoes, 

from which few will be selected for training and the 
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remaining prints, which may be further in lab-

processed, are used for test. Carried out in a 

controlled environment, the way i n which the prints 

are collectedly implies good quality prints and does 

not reveal the performances of the algorithms in the 

presence of shoe print degradations.  

Cumulative Matching Characteristic ( CMC) 

curve is used for comparison. Our results are 

compared against the work in [4] which is a PSD 

feature based shoeprint matching algorithm. Such 

technique achieves rotation invariance within a given 

range. In a brute force matching style, it uses rotated 

copies of the query print for matching from which 

the best result of correlations between the query 

rotated copies and the reference image is taken into 

account. 

 
Figure 3. Query prints wit h different rotation angles 

and noise levels: Top, partial prints with a noise ratio 

of: Left 20%, Centre 15%, Right 10% Bottom, 

correct match 

 

The first test was carried out on noisy quarters. 

The Gaussian noise is expressed as the ratio of 

Gaussian noise variance to the power of the shoe 

print image. The evaluation of the performances of 

the proposed technique detailed in Table 1 and 

Figure 4. It shows that the proposed technique 

performs better than the PSD method in [4]. As a 

matter of fact, despite having its performances drop 

as the level of noise increases, the probability of 

finding the correct match within the returned top 10 

matches is in the worst case about 0.9. Still, in our 

experiments, the proposed technique clearly 

outperforms results of the PSD method. This is 

evidenced in Figure 4 where the CMC performances 

of the proposed technique with the highest level of 

noise in our experiment are better than the PSD 

method wit the lowest level of noise. The goal of the 

second test was to evaluate the performances of 

proposed technique against rotation distortions. The 

performances are measures for a rotation angle 

between 0 to 30 degrees and then for a rotation angle 

of 45 degrees, which is outside the range of the PSD 

method. Even within the range of the PSD method, 

the proposed technique achieves much better 

performances. However, when the performances of 

the PSD drop dramatically for a rotation angle 

outside its range, the proposed technique retains its 

invariance to rotation, which is clearly demonstrated 

in Figure 3 and Table 2. The Third and finale test 

was carried out on prints that encompass both 

rotation and noise distortions, where rotation angle 

were selected randomly between 15 and 30 degrees 

and the noise levels were set to 10%, 15% and 20%. 

Once gain, the proposed technique achieves much 

higher performances than the PSD method as shown 

in Figure 6 and Table 3. Even with an additive 

Gaussian noise level of 20%, the CMC of the 

proposed technique rallies rapidly so that there is a 

probability of about 82% of finding the correct 

match within the list of the top 10 returned prints. At 

this level of noise, the proposed technique performs 

better than the PSD method at a noise level of only 

10%. 

 
Figure 4. CMC performances for partial prints with 

noise perturbations 

 

Table 1. Performances evaluation for noisy partial 

prints. 

 1st 3rd 5th 10
th
 

 Rank Rank Rank Rank 

Har_SIFT (10%) 95.67 98 98 99.33 

Har_SIFT (15%) 88.33 93.33 95.67 97 

Har_SIFT (20%) 73 81.33 86 89.67 

PSD (10%) 70 78 83 88 

PSD (15%) 53.33 61 62.67 68.33 

PSD (20%) 37.33 46 50 57.67 

 

 
Figure 5. CMC performances for partial prints with 

rotation distortions. 
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Table 2. Performances evaluation for rotation-

distorted partial prints. 

 1st 3rd 5th 10
th
  

 Rank Rank Rank Rank  

Har_SFIT 

97.67 98.67 98.67 99 

 

(0° ≤ angle≤30°) 

 

     

Har_SIFT 

91 96.33 97 97.33 

 

(45°) 

 

     

PSD 

85.67 91.67 94.33 96.67 

 

(0° ≤ angle≤30° ) 

 

     

PSD 

5.67 9 10.67 15.67 

 

(45°) 

 

     

 

 
Figure 6. CMC performances for partial prints with 

rotation and noise distortions. 

 

Table 3. Performances evaluation for noisy and 

rotated partial prints. 

 1st 3rd 5th 10
th
 

 Rank Rank Rank Rank 

Har_SIFT (10%) 90 94 95.67 97.33 

Har_SIFT (15%) 75.33 87.33 89.67 92.67 

Har_SIFT (20%) 55.33 71.67 73.67 81.67 

PSD (10%) 61.67 68.33 71 78.67 

PSD (15%) 43.67 54 58.33 63.67 

PSD (20%) 30 35.67 40.67 47.33 

 

V. Conclusions 
In this paper, we have suggested a technique for 

retrieval of shoe prints based on combining Harris 

points and SIFT descriptor. Experiments were 

conducted on partial synthetic images with rotation 

and Gaussian noise distortions. The suggested 

solution in this paper achieves excellent classification 

performances and outperforms the results of similar 

work in the literature. It is also faster and much 

simpler to implement as one no longer requires to 

rotate the query print to achieve a limited rotation 

invariance. 
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